The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
Authors
Abstract:
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary differential equations (ODEs). Also, it is clear in the numerical methods for solving the time-dependent initial boundary value problems, based on the meshless methods, to achieve the high-order accuracy the temporal direction must be solved using an effective technique. Thus, in the current paper, we apply the fourth-order exponential time differenceing Runge-Kutta method (ETDRK4) for the obtained system of ODEs. The aim of this paper is to show that the meshless method based on the generalized SPH approach is suitable for the treatment of the nonlinear complex partial differential equations. Numerical examples confirm the efficiency of proposed scheme.
similar resources
A Generalized FDTD Method with Absorbing Boundary Condition for Solving a Time-Dependent Linear Schrodinger Equation
The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrödinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution...
full textApplication of He’s homotopy perturbation method for Schrodinger equation
In this paper, He’s homotopy perturbation method is applied to solve linear Schrodinger equation. The method yields solutions in convergent series forms with easily computable terms. The result show that these method is very convenient and can be applied to large class of problems. Some numerical examples are given to effectiveness of the method.
full textGradient symplectic algorithms for solving the radial Schrodinger equation.
The radial Schrodinger equation for a spherically symmetric potential can be regarded as a one-dimensional classical harmonic oscillator with a time-dependent spring constant. For solving classical dynamics problems, symplectic integrators are well known for their excellent conservation properties. The class of gradient symplectic algorithms is particularly suited for solving harmonic-oscillato...
full textCubic Schrodinger Equation by Differential Transform Method
Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Diff...
full textFinite Difference Schemes and the Schrodinger Equation
In this paper, we primarily explore numerical solutions to the Quantum 1D Infinite Square Well problem, and the 1D Quantum Scattering problem. We use different finite difference schemes to approximate the second derivative in the 1D Schrodinger’s Equation and linearize the problem. By doing so, we convert the Infinite Well problem to a simple Eigenvalue problem and the Scattering problem to a s...
full textMy Resources
Journal title
volume 6 issue 2
pages 215- 237
publication date 2018-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023